Ramalan Skor Kredit Menggunakan Algoritma Pembelajaran Mesin
Abstract
Keywords
Full Text:
PDFReferences
A.Elsalamony, H. (2014). Bank direct marketing analysis of data mining techniques. International Journal of Computer Applications, 85(7), 12-22. doi:10.5120/14852-3218
Ampountolas, A., Nyarko Nde, T., Date, P., & Constantinescu, C. (2021). A machine learning approach for Micro-Credit scoring. Risks, 9(3), 50. doi:10.3390/risks9030050
Boz, Z., Gunnec, D., Birbil, S. I., & Öztürk, M. K. (2018). Reassessment and monitoring of loan applications with Machine Learning. Applied Artificial Intelligence, 32(9-10), 939-955. doi:10.1080/08839514.2018.1525517
Breheny, P. (n.d.). Kernel density classification. In Nonparametric Statistics. STA 621:.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32. doi:10.1023/a:1010933404324
Cervantes, J., Garcia-Lamont, F., Rodríguez-Mazahua, L., & Lopez, A. (2020). A comprehensive survey on support Vector Machine Classification: Applications, challenges and Trends. Neurocomputing, 408, 189-215. doi:10.1016/j.neucom.2019.10.118
Charbuty, B., & Abdulazeez, A. (2021). Classification based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20-28. doi:10.38094/jastt20165
Cunningham, P., & Delany, S. J. (2022). K-nearest neighbour classifiers - a tutorial. ACM Computing Surveys, 54(6), 1-25. doi:10.1145/3459665
Huang, S., Cai, N., Pacheco, P. P., Narrandes, S., Wang, Y., & Xx, W. (2018, January 02). Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genomics & Proteomics, 15(1), 41-51. doi:10.21873/cgp.20063
Jadhav, S. D., & Channe, H. P. (2016, August). Efficient Recommendation System Using Decision Tree Classifier and Collaborative Filtering. International Research Journal of Engineering and Technology (IRJET), 03(08), 2016th ser., 2113-2118.
Koohang, A., Sargent, C. S., Nord, J. H., & Paliszkiewicz, J. (2022). Internet of things (IOT): From Awareness to continued use. International Journal of Information Management, 62, 102442. doi:10.1016/j.ijinfomgt.2021.102442
Kumar, A., Shanthi, D., & Bhattacharya, P. (2021). Credit Score Prediction System using deep learning and K-means algorithms. Journal of Physics: Conference Series, 1998(1), 012027. doi:10.1088/1742-6596/1998/1/012027
Kumar, M. S., Soundarya, V., Kavitha, S., Keerthika, E., & Aswini, E. (2019). Credit card fraud detection using random forest algorithm. 2019 3rd International Conference on Computing and Communications Technologies (ICCCT), 149-153. doi:10.1109/iccct2.2019.8824930
Kwon, Y., Shin, W., Ko, J., & Lee, J. (2020). AK-score: Accurate protein-ligand binding affinity prediction using an ensemble of 3D-Convolutional Neural Networks. International Journal of Molecular Sciences, 21(22), 8424. doi:10.3390/ijms21228424
Maleki, F., Ovens, K., Najafian, K., Forghani, B., Reinhold, C., & Forghani, R. (2020). Overview of Machine Learning Part 1. Neuroimaging Clinics of North America, 30(4). doi:10.1016/j.nic.2020.08.007
Mat Amin, M., Yep Ai Lan, J., Makhtar, M., & Rasid Mamat, A. (2018). A decision tree based recommender system for backpackers accommodations. International Journal of Engineering & Technology, 7(2.15), 45. doi:10.14419/ijet.v7i2.15.11210
Nasteski, V. (2017). An overview of the supervised machine learning methods. HORIZONS.B, 4, 51-62. doi:10.20544/horizons.b.04.1.17.p05
Park, H. (2013). An introduction to logistic regression: From basic concepts to interpretation with particular attention to nursing domain. Journal of Korean Academy of Nursing, 43(2), 154. doi:10.4040/jkan.2013.43.2.154
Patel, H. H., & Prajapati, P. (2018). Study and analysis of decision tree based classification algorithms. International Journal of Computer Sciences and Engineering, 6(10), 74-78. doi:10.26438/ijcse/v6i10.7478
Rudra Kumar, M., & Kumar Gunjan, V. (2020). Review of Machine Learning Models for credit scoring analysis. Ingeniería Solidaria, 16(1). doi:10.16925/2357-6014.2020.01.11
Sarker, I. H. (2021). Machine learning: Algorithms, real-world applications and Research Directions. SN Computer Science, 2(3). doi:10.1007/s42979-021-00592-x
Shipe, M. E., Deppen, S. A., Farjah, F., & Grogan, E. L. (2019). Developing prediction models for clinical use using logistic regression: An overview. Journal of Thoracic Disease, 11(S4). doi:10.21037/jtd.2019.01.25
Taunk, K., De, S., Verma, S., & Swetapadma, A. (2019). A brief review of nearest neighbor algorithm for learning and classification. 2019 International Conference on Intelligent Computing and Control Systems (ICCS). doi:10.1109/iccs45141.2019.9065747
Tong, S., & Koller, D. (2001, February 11). Support Vector Machine Active Learning with Applications to Text Classification. Journal of Machine Learning Research, 45-66.
Tsai, C., & Chen, M. (2010). Credit rating by Hybrid Machine Learning Techniques. Applied Soft Computing, 10(2), 374-380. doi:10.1016/j.asoc.2009.08.003
Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1). doi:10.1186/s12911-019-1004-8
Uddin, S., Khan, A., Hossain, M. E., & Moni, M. A. (2019). Comparing different supervised machine learning algorithms for disease prediction. BMC Medical Informatics and Decision Making, 19(1). doi:10.1186/s12911-019-1004-8
Vijayarani, S., & Dhayanand, S. (2015, April). Liver Disease Prediction using SVM and Naïve Bayes Algorithms. International Journal of Science, Engineering and Technology Research (IJSETR), 4(4), issn: 2278 – 7798, 816-820.
Wang, Y., Zhang, Y., Lu, Y., & Yu, X. (2020). A comparative assessment of Credit Risk Model based on machine learning ——a case study of Bank Loan Data. Procedia Computer Science, 174, 141-149. doi:10.1016/j.procs.2020.06.069
Weng, C., & Huang, C. (2021). A hybrid machine learning model for credit approval. Applied Artificial Intelligence, 35(15), 1439-1465. doi:10.1080/08839514.2021.1982475
Xie, Y., Li, X., Ngai, E., & Ying, W. (2009). Customer churn prediction using improved balanced random forests. Expert Systems with Applications, 36(3), 5445-5449. doi:10.1016/j.eswa.2008.06.121
Yin, H. (2019). Bank globalization and Financial Stability: International evidence. Research in International Business and Finance, 49, 207-224. doi:10.1016/j.ribaf.2019.03.009
Zhang, W., Wu, C., Zhong, H., Li, Y., & Wang, L. (2021). Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geoscience Frontiers, 12(1), 469-477. doi:10.1016/j.gsf.2020.03.007
Zhu, C., Idemudia, C. U., & Feng, W. (2019). Improved logistic regression model for diabetes prediction by integrating PCA and K-means techniques. Informatics in Medicine Unlocked, 17, 100179. doi:10.1016/j.imu.2019.100179
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Khai Wah Khaw
Published by:
AIBPM Publisher
Editorial Office:
JL. Kahuripan No. 9 Hotel Sahid Montana, Malang, Indonesia
Phone: +62 341 366222
Email: admin.ssem@gmail.com
Website: https://ejournal.aibpmjournals.com/index.php/ssem
Supported by: Association of International Business & Professional Management
If you are interested to get the journal subscription you can contact us at admin.publisher@gmail.com
E-ISSN : 3032-324X
DOI: Prefix 10.32535 by CrossREF
INDEXED:
In Process
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















