Ramalan Keciciran Pelanggan Telco Menggunakan Algoritma Pembelajaran Mesin
Abstract
Keywords
Full Text:
PDFReferences
Alpaydin, E. (2014). Introduction to machine learning.
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Chen, S., Webb, G. I., Liu, L., & Ma, X. (2020). A novel selective naïve Bayes algorithm. Knowledge-Based Systems, 192, 105361. https://doi.org/10.1016/j.knosys.2019.105361
Dalvi, P. K., Khandge, S. K., Deomore, A., Bankar, A., & Kanade, V. (2016). Analysis of customer churn prediction in telecom industry using decision trees and logistic regression. 2016 Symposium on Colossal Data Analysis and Networking (CDAN), 1–4. IEEE.
Du, P., Samat, A., Waske, B., Liu, S., & Li, Z. (2015). Random forest and rotation forest for fully polarized SAR image classification using polarimetric and spatial features. ISPRS Journal of Photogrammetry and Remote Sensing, 105, 38–53.
Hartatik, Kusrini, K., & Prasetio, A. B. (2020). Prediction of student graduation with Naive Bayes algorithm. 2020 Fifth International Conference on Informatics and Computing (ICIC). https://doi.org/10.1109/ICIC50835.2020.928862
Hemlata, J., Ajay, K., & Sumit, S. (2019). Churn prediction in telecommunication using logistic regression and LogitBoost. International Conference on Computational Intelligence and Data Science, 101–102, 10–12.
Joseph, V. R. (2022). Optimal ratio for data splitting. Statistical Analysis and Data Mining: The ASA Data Science Journal, 15(4), 531–538. https://doi.org/10.1002/sam.11583
Langarizadeh, M., & Moghbeli, F. (2016). Applying naive Bayesian networks to disease prediction: A systematic review. Acta Informatica Medica, 24(5), 364–369. https://doi.org/10.5455/aim.2016.24.364-369
Malik, S., & Runwal, S. (2023). A study on customer churn prediction. International Research Journal of Modernization in Engineering Technology and Science, 5(4), 3600–3604. https://doi.org/10.56726/IRJMETS36156
Nibbering, D., & Hastie, T. J. (2022). Multiclass-penalized logistic regression. Computational Statistics & Data Analysis, 169, 107414.
Osisanwo, F. Y., Akinsola, J. E. T., Awodele, O., Hinmikaiye, J. O., Olakanmi, O., & Akinjobi, J. (2017). Supervised machine learning algorithms: Classification and comparison. International Journal of Computer Trends and Technology, 48(3), 120–126.
Rodan, A., Faris, H., Alsakran, J., & Al-Kadi, O. (2014). A support vector machine approach for churn prediction in telecom industry. Information – An International Interdisciplinary Journal, 17(8).
Schapire, R. E., & Singer, Y. (1999). Improved boosting algorithms using confidence-rated predictions. Machine Learning, 37(3), 297–336. https://doi.org/10.1023/A:1007614523901
Schölkopf, B., & Smola, A. (2002). Learning with kernels: Support vector machines, regularization, optimization, and beyond. MIT Press.
Sjarif, N. N. A., Yusof, M. R. M., Wong, D. H., Ya’akob, S., Ibrahim, R., & Osman, M. Z. (2019). Customer churn prediction using Pearson correlation function and K-nearest neighbor algorithm for telecommunication industry. International Journal of Advance Soft Computing and Applications, 11(2).
Wu, Z., Jing, L., & Wu, B. (2022). A PCA-AdaBoost model for e-commerce customer churn prediction. Annals of Operations Research. https://doi.org/10.1007/s10479-022-04526-5
Xie, Y., Li, X., Ngai, E. W. T., & Ying, W. (2009). Customer churn prediction using improved balanced random forests. Expert Systems with Applications, 36(3), 1–? https://doi.org/10.1016/j.eswa.2008.06.121
Zhang, Z. (2016). Introduction to machine learning: k-nearest neighbors. Annals of Translational Medicine, 4(11).
Refbacks
- There are currently no refbacks.
Copyright (c) 2026 Xinying Chew
Published by:
AIBPM Publisher
Editorial Office:
JL. Kahuripan No. 9 Hotel Sahid Montana, Malang, Indonesia
Phone: +62 341 366222
Email: admin.ssem@gmail.com
Website: https://ejournal.aibpmjournals.com/index.php/ssem
Supported by: Association of International Business & Professional Management
If you are interested to get the journal subscription you can contact us at admin.publisher@gmail.com
E-ISSN : 3032-324X
DOI: Prefix 10.32535 by CrossREF
INDEXED:
In Process
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

















